
An Infrastructure for Intercommunication Between
Widgets in Personal Learning Environments

Tobias Nelkner

1 Computer Science and Education, University of Paderborn,
Fürstenallee 11, 33102 Paderborn, Germany, tobin@upb.de

Abstract: Widget based mashups seem to be a proper approach to realise self-
organisable Personal Learning Environments. In comparison to integrated and
monolithic pieces of software developed for supporting certain workflows,
widgets provide small sets of functionality. The results of one widget can hardly
be used in other widgets for further processing. In order to overcome this gap
and to provide an environment allowing easily developing PLEs with complex
functionality, the based on the TenCompetence Widget Server [1], we
developed a server that allows widgets to exchange data. This key functionality
allows developers to create synergetic effects with other widgets without
increasing the effort of developing widgets nor having to deal with web services
or similar techniques. Looking for available data and events of other widgets,
developing the own widget and uploading it to the server is an easy way
publishing new widgets. With this approach, the knowledge worker is enabled
to create a PLE with more sophisticated functionality by choosing the
combination of widgets needed for the current task. This paper describes the
Widget Server developed within the EU funded IP project Mature, which
possibilities it provides and which consequences follow for widget developer.

Keywords: PLE, SOA, mashup, informal learning, personalized learning,
widgets.

1 Introduction

The term Widget is the short version of „window gadget“ and has been applied during
Project Athena [2]. A widget is usually a window the user can interact with and
provides a small set of functionality. Widgets are nowadays well known and used in
very different contexts like in a WeBlog to aggregate a RSS feed or for weather
information on the operation system like in Windows Vista or Mac OS X. The last
years widgets became very important in the research area of computer supported
education and (informal) learning [3]. Because of their small set of functionality the
learner can personalise its learning environment and choose exactly the one he or she
needs to fulfill the current task. Therefore, many environments have been developed
to mashup widgets in order to allow learners creating their Personal Learning

Environment (PLE), for example ELGG1. A PLE is not a formal educational concept
but one for computer supported work integrated learning [4]. Hence, within working
processes also more complex tasks have to be fulfilled by the user and therefore need
to be supported by the PLE. As Attwell mentioned, a PLE has to support learning
among others by aggregating and scaffolding, sharing, and reflecting knowledge with
a key focus on communication and collaboration [5]. Bringing the mashup concept of
widgets and the requirements on a work integrated PLE together, intercommunication
between widgets is a possible solution for creating PLEs more effecient, interactive
and immersive. Exchanging data enables two or more widgets to create more
sophisticated functionality by linking the output of one widget to the input of another
one.

The widget server has been implemented within the EU funded IP project
MATURE and is presented in this paper. It provides communication channels between
widgets and allows also the collaboration of users via their widgets. This server
allows running widgets almost independent from platform and programming language
as long as a broker to the JAVA programming language is available.

The next section provides a look to related work in order to show up similarities
but also improvements compared to other projects and work. Section 3 then explains
the concept, different components of the server and its special functionalities. Section
4 closes the report with a conclusion and an outlook.

2 Related Work

Well known environments exist allowing users including, running, and configuring a
widget in its mashups, like iGoogle or Netvibes. Both of them provide an own widget
definition for inlcuding self developed widgets and they provide a huge repository of
existing ones. But both environments lack of the possibility of intercommunication
between widgets and data persistence and therefore do not allow to combine the
functionalities of widgets to more complex ones. This leads to isolated functionality
of small widgets without supporting users in more complex tasks in a workflow.
Moreover, the missing possibility of saving data and sharing it in the user‘s
community is a barrier for creating new knowledge. Nevertheless, some widgets
provide possibility of saving data but neither it is transparent where and how it is
saved (private/public) nor is it accessible for any kind of analysis for tasks like expert
finding, provision of information on demand or reuse of certain information in another
context.
A closed systems like WordPress that is set up quickly on an own server, provides
transparency and sustainability. It is easy to add widgets on the user interface but they

1 http://elgg.org/

also lack of intercommunication. Yahoo has developed the Yahoo Pipes system that
allows mashing up and filtering information streams of RSS feeds. However,
intercommunication between widgets means additionally exchanging data and firing
events on other widgets for instance to update the user interface or run some
computations.
Within the EzWeb/Fast EU funded project [6] a SOA based environment has been
created that allows the composition of mashups of widgets by providing them in a
special repository. The EzWeb composition environment is a user interface that allows
graphically connecting widgets in order to create intercommunication by linking the
output of one widget to the input of another one. In the backend, this connection
results in an orchestration of webservices. The architecture presented here, bases on
the idea of providing widget communication facilities and it does not matter in which
environment they run, nor in which programming language they are developed. A
minimum of overhead in administration shall be achieved. Moreover, widgets shall
not only be visualisations of data but also may realise business logic, depending on
what the developer wants to provide to the user. It is not the aim to link the underlying
data or logical services they shall remain independent.
Another approach is a result of the TenCompetence partly EU-funded project with the
Wookie server as one of the outcomes. The Wookie server allows hosting and
instantiation of widgets and provides a proxy server that allows access to different
kind of services and therefore also to backend services. However, the Wookie server
misses also intercommunication of widgets although it provides a data pool where
each widget has access to. This allows the group wide use of data (for example for a
chat widget) but no communication in the nearer sense, for example point to point.
Nevertheless, this architecture has served for a first version of the server presented in
this paper. It has been redesigned and completely new implemented in order to
concentrate on the special issue of intercommunication between widgets and between
one widget and groups of them within the server. Therefore an independence from the
user interface has been achieved. The user can choose in which platform his or her
widgets shall run, there is no difference running them in iGoogle, WordPress or an
integrated environment as long as they can use the provided API for the server.

An infrastructure of a Widget Server that hosts widgets, provides communication
facilities and transparent access to backend systems for persistence and sustainability
is a valuable challenge for improving PLE implementations. In the next section the
server concept and its different aspects are described.

3 Widget Server Architecture

In order to describe the server structure, the requirements shall be described before
explaining the server concept.

3.1 Requirements on the Server

As described before, the most important aspects are the provision of a widget
repository, the possibility of intercommunication between widgets and a transparent
access to a backend-system for storing, retrieving and analysing data.
The widget repository serves the user as a kind of catalogue to find widgets he or she
likes to mashup. Therefore, it provides an upload and download functionality where
especially the upload is enriched with validation tests on the widget. Download
means, the user can start the widget locally in his client, for instance in case of
HTML Widgets, in the web browser. Consequently, a user management is necessary
in order to provide user bound persistence services as profile management or
configuration settings.
The access to a backend system is necessary to provide persistence services to the
widgets for storing or retrieving data. Such a backend system can be a middleware
like the Knowledge Bus concept [7] but also a set of fix services provided by a certain
system.
A communication system allows widgets to get data and events from other widgets,
this can be on a direct channel but also via broadcast to all widgets that are interested
in a special data set of another widget.

Figure 1: The Widget Server Architecture

3.2 The Architecture
Ongoing from these requirements a first version of the server has been developed
based up on the Wookie server of the TenCompetence project. This server already
allows the hosting of widgets and undirected information flow. For example, a chat
widget is available that allows chatting with all users that opened the widget.

Based on this server, a version was developed that provided a user centric
communication channel for all loaded widgets but had also some limitations
especially concerning a transparent backend interface and the possiblity of loading
widgets developed in different programming languages. For instance, it was not
possible to use Flex widgets or JavaFX widgets as the access to the communication
channel was not available.

With the experiences of this development, a complete new server has been build that
meets our expectations and requirements (see Figure 1).
The server is divided into the four parts of Widget Management, Message System,
Profile Management, and Knowledge Bus Connector that will be explained in detail in
the following.

3.2.1 Widget Management
The Widget Management package of the server contains all modules dealing with the
issues of the widget repository mentioned above. This includes hosting, adding and
managing running and inactive widgets. Especially the Widget Catalogue needs a
database to save metadata about hosted widgets and as a backend system is not
necessarily available, this database is not outsourced but under the control of this
package.
The Widget Catalogue holds a collection of the currently available widget types or
templates, for example a Weather Widget, Chat Widget, etc. These are then
instantiated and executed in the user's client. In addition to this, the catalogue also
keeps track of each widget's preferred run-time environment. It is thought to be
queried by users‘ workspaces and provides a list of available and fitting widgets for
that workspace. This is important especially to include mobile devices with their
special requirements on performance, display size etc.
The Instance Management is the most important component of the widget
management package of the server. It keeps track of all running instances of widgets
in all connected workspaces and automatically purges widgets that have become
inactive. It is always the most up-to-date source on the current global state of the
widget server, and messaging and administration functions depend on it. As well as
keeping track of running widgets, it also manages the state of their communication,
for example which widgets are connected to communication units. The messaging
system uses this information to distribute messages correctly.
The Admin Module performs management functions for the widget management
component, usually working on the catalogue. It provides options for catalogue
maintenance, widget upload, widget deletion and other administrative functionality. It
is intended to be accessed via internal messaging or an authentication-enabled web
frontend.
The Storage Modul stores widget files, such as Flash, Flex, HTML and JavaScript
files. This is basically a shared and protected directory or drive from which the hosted
widgets are being loaded via HTTP. This is transparent to the user.

3.2.2 Message System
The Message System is used for widget-to-widget and widget-to-server
communication. The Message Broker supports point to point communication as well
as group based communication models. Groups are created automatically, either

because of the input and output paramters of loaded widgets or according to the user’s
configuration. They are provided by the Instance Management module of the Widget
Management component. All external entities like widgets, an administration frontend
or the backend system accessing the server via adapters. The used adapter concept is
flexible and allows the connection of all kinds of systems as long as an adapter can be
developed that works as a translator between the certain programming languages and
JAVA.

3.2.3 Profile Management
The Profile Management module is conceptualised for managing server-bound user
data that is strictly necessary for the widgets to work. This includes data that is only
used to provide essential functions of the widget system and does not necessarily need
to be stored in the backend. It includes for example user authentication, default widget
positions, saved environment configurations (if available), possibly third-party logins
and others. Especially the user management led to the possibility of
intercommunication between widgets of different users. This allows to develop
communication and collaboration facilities.
Because of its special relevance this module is part of the server as the backend
system is not necessarily available and not important for the server and the hosted
widgets to run. As long as a backend system is integrated in the server, it makes sense
to use this module as a stub and provide the used database as a backend service.
Because of this conceptual duality this package is greyed in the image.

3.2.4 Backend Connector
The Backend Connector is responsible for providing the access to appropriate services
where it is unimportant if this is a middleware encapsulating several services or only
one service. All requests and responses are transferred through this connector and that
translates the requests to the backend in the specific calls. The connector has to be
adapted according to the respective backend system.
Widgets not necessarily depend on the existence of a backend as long as storing or
retrieving data from a certain database system is not relevant.

3.2.5 Graphical User Interface
The GUI is the users‘ client on which the widgets will run. This GUI is connected to
the server via an adapter providing access to the communication system. As the
adapter is also the broker between different programming languages, the widget
developer can choose the one he is comfortable with, which simplifies widget
development enormously and decreases barriers working with the server. Moreover, it
does not matter if the widgets run standalone in a browser or if they are encapsulated
in a closed environment where this is responsible for mapping messages to the certain
widgets. Nor is it irrelevant if a widget is running as a desktop client as long it is
connected to the server. Consequently it is possible to link browser widgets and

desktop widgets interacting with each other. It only depends on the adapter and can be
accessed via different techniques, e.g. JMS, DWR and others.

3.3 Relation Between Modules

In order to provide a clearer picture of the interaction between these modules an use
case based example of how the server manages the certain requests is shortly
presented.
A calendar widget and a weather widget are loaded by including them into iGoogle,
interacting with each other and with the backend system. Using widgets in iGoogle is
easy as it only contains a link to the Storage in the Widget Management package.
After the browser has loaded both widgets, the server authenticates them at the Profile
Management. Then a message is send to the Message System for registering the
widgets in the Instance Management, the pool for all running widgets. Furthermore,
they are registered to communication group that allows them to talk to each other.
This is either realised by connecting widgets automatically according to their input
and output format or manually by the user. The latter one is only possible as widget
developers have specify the input and output format so that the server can map them.
If the user now creates a calendar entry with a certain place, the calendar widget sends
a message to the server that distributes it to the common group. The weather widget
gets this message, checks if it can interpret the message and updates the display.
By creating the new entry, the calendar widget also sends a save request to the widget
server. This is translated into a backend save request to store the calendar dates. The
widget server only transfers this message to the backend connector which calls the
specific web service or backend system.

4 Conclusions and Outlook

In this paper a widget server has been presented that allows hosting of widgets,
intercommunication between widgets and provides an access to a backend system that
traces requests to it. It is constructed as a flexible and modular server that allows to
connect almost every kind of widgets. Because of the approach of connecting small
pieces of functionality the similar based mashup approach of a PLE is fully supported
also within the server. This allows for creating more sophisticated and complex
functionality by connecting widgets via this server.
With this approach an essential step forward towards personlisable learning
environments has been done, especially by providing widget developers a platform
for easily creating widgets and using the output data of foreign widgets to provide
more sophisticated functionality. Users do not need to care about in which
environment, on which client or on which platform they want to run their widgets, the
server itself does not have any conceptual limitations concerning this.

But as described above, in order to make the development of widgets as easy as
possible but also to be as standard conform as possible, this server concept makes
demands on the widgets specification. Hence, the future work concerning this is to
provide a specification that allows developers to describe their widgets as exact as
possible which is necessary to support linking widgets. Otherwise the mapping of data
between widgets would not be possible. Moreover, we have to have a look on the
W3C Widget Specification2 (working draft) and how we can include and validate this
standard within our server. In opposition to this W3C standard, we do not limit the
server running Web-Widgets. May be a similar specification can be found for desktop
widgets and those of other programming languages (e.g. Flex/ActionScript), too.

Acknowledgement

This work was co-funded by the European Commission under the Information and
Communication Technologies (ICT) theme of the 7th Framework Programme (FP7)
within the Integrating Project MATURE (contract no. 216356).

References

1: S. Wilson, P. Sharples, and D. Griffiths, "Distributing education services to personal and
institutional systems using widgets," in Proceedings of the First International Workshop on
Mashup Personal Learning Environments (MUPPLE08), September 2008.
2: Arfman, J. M.; Roden, Peter. Project Athena: Supporting distributed computing at MIT, IBM
Systems Journal Volume 31, Number 3, 1992.
3: Graham Attwell: Personal Learning Environments for creating, consuming, remixing and
sharing, In: David Griffiths and Rob Koper and Oleg Liber (eds.): Service Oriented Approaches
and Lifelong Competence Development Infrastructures: Proceedings of the 2nd
TENCompetence Open Workshop, Institute of Educational Cybernetics, 2007, pp. 36-41
4: Graham Attwell: The Personal Learning Environments - the future of eLearning? In:
eLearning Papers, vol. 2, no. 1, 2007, pp.
5: Graham Attwell, Jenny Bimrose, Alan Brown, Sally-Anne Barnes
Maturing learning: Mash up Personal Learning Environments, In: Fridolin Wild and Marco
Kalz and Matthias Palmér (eds.): Proceedings of the First International Workshop on Mashup
Personal Learning Environments (MUPPLE08) Maastricht, The Netherlands, September 17,
2008. In conjunction with the 3rd European Conference on Technology Enhanced Learning
(EC-TEL'08), Maastricht School of Management, Maastricht, The Netherlands, September
18-19, 2008, CEUR Workshop Proceedings vol. 388, 2008
6: David Lizcano, Javier Soriano, Marcos Reyes, Juan J. Hierro, "EzWeb/FAST: Reporting on a
Successful Mashup-Based Solution for Developing and Deploying Composite Applications in
the Upcoming „Ubiquitous SOA“, pp. 488-495,

2 http://www.w3.org/TR/widgets/

7: Hinkelmann, K., Magenheim, J., Reinhardt, W., Nelkner, T., Holzweißig, K., Mlynarski, M.:
KnowledgeBus - An Architecture to Support Intelligent and Flexible Knowledge Management.
In: Duval, E., Klamma, R., Wolpers, M. (Hrsg.) Creating New Learning Experiences on a
Global Scale. Second European Conference on Technology Enhanced Learning, EC-TEL 2007
Crete, Greece, Springer Berlin, ISSN 0302-9743 (Print), S. 487-492.

