GoogleTranslate Service


Is this the right way to use machine learning in education?

September 2nd, 2019 by Graham Attwell

An article ‘Predicting Employment through Machine Learning‘ by Linsey S. Hugo on the National Association of Colleges and Employers web site,confirms some of my worries about the use of machine learning in education.

The article presents a scenario which it is said “illustrates the role that machine learning, a form of predictive analytics, can play in supporting student career outcomes.” It is based on a recent study at Ohio University (OHIO) which  leveraged machine learning to forecast successful job offers before graduation with 87 percent accuracy. “The study used data from first-destination surveys and registrar reports for undergraduate business school graduates from the 2016-2017 and 2017-2018 academic years. The study included data from 846 students for which outcomes were known; these data were then used in predicting outcomes for 212 students.”

A key step in the project was “identifying employability signals” based on the idea that “it is well-recognized that employers desire particular skills from undergraduate students, such as a strong work ethic, critical thinking, adept communication, and teamwork.” These signals were adapted as proxies for the “well recognised”skills.

The data were used to develop numerous machine learning models, from commonly recognized methodologies, such as logistic regression, to advanced, non-linear models, such as a support-vector machine. Following the development of the models, new student data points were added to determine if the model could predict those students’ employment status at graduation. It correctly predicted that 107 students would be employed at graduation and 78 students would not be employed at graduation—185 correct predictions out of 212 student records, an 87 percent accuracy rate.

Additionally, this research assessed sensitivity, identifying which input variables were most predictive. In this study, internships were the most predictive variable, followed by specific majors and then co-curricular activities.

As in many learning analytics applications the data could then be used as a basis for intervention to support students employability on gradation. If they has not already undertaken a summer internship then they could be supported in this and so on.

Now on the one hand this is an impressive development of learning analytics to support over worked careers advisers and to improve the chances of graduates finding a job. Also the detailed testing of different machine learning and AI approaches is both exemplary and unusually well documented.

However I still find myself uneasy with the project. Firstly it reduces the purpose of degree level education to employment. Secondly it accepts that employers call the shots through proxies based on unquestioned and unchallenged “well recognised skills” demanded by employers. It may be “well recognised” that employers are biased against certain social groups or have a preference for upper class students. Should this be incorporated in the algorithm. Thirdly it places responsibility for employability on the individual students, rather than looking more closely at societal factors in employment. It is also noted that participation in unpaid interneships is also an increasing factor in employment in the UK: fairly obviously the financial ability to undertake such unpaid work is the preserve of the more wealthy. And suppose that all students are assisted in achieving the “predictive input variable”. Does that mean they would all achieve employment on graduation? Graduate unemployment is not only predicated on individual student achievement (whatever variables are taken into account) but also on the availability of graduate jobs. In teh UK  many graduates are employed in what are classified as non graduate jobs (the classification system is something I will return to in another blog). But is this because they fail to develop their employability signals or simply because there simply are not enough jobs?

Having said all this, I remain optimistic about the role of learning analytics and AI in education and in careers guidance. But there are many issues to be discussed and pitfalls to overcome.

 

Comments are closed.

  • Search Pontydysgu.org

    Social Media




    News Bites

    Graduate Jobs

    As reported by WONKHE, a survey of 1,200 final year students conducted by Prospects in the UK found that 29 per cent have lost their jobs, and 26 per cent have lost internships, while 28 per cent have had their graduate job offer deferred or rescinded. 47 per cent of finalists are considering postgraduate study, and 29 per cent are considering making a career change. Not surprisingly, the majority feel negative about their future careers, with 83 per cent reporting a loss of motivation and 82 per cent saying they feel disconnected from employers


    Post-Covid ed-tech strategy

    The UK Ufi VocTech Trust are supporting the Association of Colleges to ensure colleges are supported to collectively overcome challenges to delivering online provision at scale. Over the course of the next few months, AoC will carry out research into colleges’ current capacity to enable high quality distance learning. Findings from the research will be used to create a post-Covid ed-tech strategy for the college sector.

    With colleges closed for most face-to-face delivery and almost 100% of provision now being delivered online, the Ufi says, learners will require online content and services that are sustainable, collective and accessible. To ensure no one is disadvantaged or left behind due to the crisis, this important work will contribute to supporting businesses to transform and upskilling and reskilling those out of work or furloughed.


    Erasmus+

    The European Commission has published an annual report of the Erasmus+ programme in 2018. During that time the programme funded more than 23,500 projects and supported the mobility of over 850,00 students, of which 28,247 were involved in UK higher education projects, though only one third of these were UK students studying abroad while the remainder were EU students studying in the UK. The UK also sent 3,439 HE staff to teach or train abroad and received 4,970 staff from elsewhere in the EU.


    Skills Gaps

    A new report by the Learning and Work Institute for the Local Government Association (LGA) finds that by 2030 there could be a deficit of 2.5 million highly-skilled workers. The report, Local Skills Deficits and Spare Capacity, models potential skills gaps in eight English localities, and forecasts an oversupply of low- and intermediate -skilled workers by 2030. The LGA is calling on the government to devolve the various national skills, retraining and employment schemes to local areas. (via WONKHE)


    Other Pontydysgu Spaces

    • Pontydysgu on the Web

      pbwiki
      Our Wikispace for teaching and learning
      Sounds of the Bazaar Radio LIVE
      Join our Sounds of the Bazaar Facebook goup. Just click on the logo above.

      We will be at Online Educa Berlin 2015. See the info above. The stream URL to play in your application is Stream URL or go to our new stream webpage here SoB Stream Page.

  • Twitter

  • Digital technologies and parental involvement in education: the experiences of mothers of primary school-aged children tandfonline.com/doi/abs/10.10…

    About 4 days ago from Cristina Costa's Twitter via Twitter Web App

  • Recent Posts

  • Archives

  • Meta

  • Categories