GoogleTranslate Service


The challenge for Learning Analytics: Sense making

January 28th, 2016 by Graham Attwell

https://sylviamoessinger.files.wordpress.com/2012/06/learninganalytics_chalkboard.jpg

Image: Educause

Its true Twitter can be a distraction. But it is an unparalleled  resource for new ideas and learning about things you didn’t know you wanted to learn about. This morning my attention was drawn by a Tweet linking to a interview in Times Higher Education with Todd Rose entitled “taking on the ‘averagarians’.” Todd Rose believes that “more sophisticated examples of “averagarian” fallacies – making decisions about individuals on the basis of what an idealised average person would do – are causing havoc all round.” The article suggests that this applies to higher education giving the example that “Universities assume that an average student should learn a certain amount of information in a certain amount of time. Those who are much quicker than average on 95 per cent of their modules and slower than average on 5 per cent may struggle to get a degree.”

It seems to me that this is one of the problems with Data Analytics. It may or may not matter that an individual is doing better or worse than the average in a class or that they spend more or less time reading or even worse logged on to the campus VLE. Its not that this data isn’t potentially useful but it is what sense to make of it. I’m currently editing a paper for submission to the workshop on Learning Analytics for Workplace and Professional Learning (LA for Work) at Learning Analytics and Knowledge Conference (LAK 2016) in April (I will post a copy of the paper here on Sunday). And my colleague Andreas Schmidt has contributed what I think is an important paragraph:

Supporting the learning of individuals with learning analytics is not just as designers of learning solutions how to present dashboards, visualizations and other forms of data representation. The biggest challenge of workplace learning analytics (but also learning analytics in general) is to support learners in making sense of the data analysis:

  • What does an indicator or a visualization tell about how to improve learning?
  • What are the limitations of such indicators?
  • How can we move more towards evidence-based interventions

And this is not just a individual task; it requires collaborative reflection and learning processes. The knowledge of how to use learning analytics results for improving learning also needs to evolve through a knowledge maturing process. This corresponds to Argyris & Schön’s double loop learning. Otherwise, if learning analytics is perceived as a top-down approach pushed towards the learner, it will suffer from the same problems as performance management. These pre-defined indicators (through their selection, computation, and visualization) implement a certain preconception which is not evaluated on a continuous basis by those involved in the process. Misinterpretations and a misled confidence in numbers can disempower learners and lead to an overall rejection of analytics-driven approaches.

Please follow and like us:

Comments are closed.

  • Search Pontydysgu.org

    Social Media




    News Bites

    Cyborg patented?

    Forbes reports that Microsoft has obtained a patent for a “conversational chatbot of a specific person” created from images, recordings, participation in social networks, emails, letters, etc., coupled with the possible generation of a 2D or 3D model of the person.

    Please follow and like us:


    Racial bias in algorithms

    From the UK Open Data Institute’s Week in Data newsletter

    This week, Twitter apologised for racial bias within its image-cropping algorithm. The feature is designed to automatically crop images to highlight focal points – including faces. But, Twitter users discovered that, in practice, white faces were focused on, and black faces were cropped out. And, Twitter isn’t the only platform struggling with its algorithm – YouTube has also announced plans to bring back higher levels of human moderation for removing content, after its AI-centred approach resulted in over-censorship, with videos being removed at far higher rates than with human moderators.

    Please follow and like us:


    Gap between rich and poor university students widest for 12 years

    Via The Canary.

    The gap between poor students and their more affluent peers attending university has widened to its largest point for 12 years, according to data published by the Department for Education (DfE).

    Better-off pupils are significantly more likely to go to university than their more disadvantaged peers. And the gap between the two groups – 18.8 percentage points – is the widest it’s been since 2006/07.

    The latest statistics show that 26.3% of pupils eligible for FSMs went on to university in 2018/19, compared with 45.1% of those who did not receive free meals. Only 12.7% of white British males who were eligible for FSMs went to university by the age of 19. The progression rate has fallen slightly for the first time since 2011/12, according to the DfE analysis.

    Please follow and like us:


    Quality Training

    From Raconteur. A recent report by global learning consultancy Kineo examined the learning intentions of 8,000 employees across 13 different industries. It found a huge gap between the quality of training offered and the needs of employees. Of those surveyed, 85 per cent said they , with only 16 per cent of employees finding the learning programmes offered by their employers effective.

    Please follow and like us:


    Other Pontydysgu Spaces

    • Pontydysgu on the Web

      pbwiki
      Our Wikispace for teaching and learning
      Sounds of the Bazaar Radio LIVE
      Join our Sounds of the Bazaar Facebook goup. Just click on the logo above.

      We will be at Online Educa Berlin 2015. See the info above. The stream URL to play in your application is Stream URL or go to our new stream webpage here SoB Stream Page.

      Please follow and like us:
  • Twitter

  • Recent Posts

  • Archives

  • Meta

  • Categories